A Biomed Data Analyst Training Program

Supervised (and some unsupervised) learning

Professor Ron S. Kenett

Chapter 7 Modern Analytic Methods: Part I

Preview This chapter is a door opener to computer age statistics. It covers a range of supervised and unsupervised learning methods and demonstrates their use in various applications.

7.1 Introduction to Computer Age Statistics

Big data and data science applications have been facilitated by hardware developments in computer science. As data storage began to increase, more advanced software was required to process it. This led to the development of cloud computing and distributed computing. Parallel machine processing was enhanced by the development of Hadoop, based on off-the-shelf Google File System (GFS) and Google MapReduce, for performing distributed computing.

Chapter 7

Modern Statistics: A Computer Based Approach with Python by Ron Kenett, Shelemyahu Zacks, Peter Gedeck

Publisher: Springer International Publishing; 1st edition (September 15, 2022) ISBN-13: 978-3031075650

(c) 2022 Ron Kenett, Shelemyahu Zacks, Peter Gedeck

The code needs to be executed in sequence.

In [1]: import warnings
import os
os.environ['OUTDATED_IGNORE'] = '1'
from outdated import OutdatedPackageWarning
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=OutdatedPackageWarning)

Modern analytic methods: Part I

In [2]: import warnings import random import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score from sklearn.impute import SimpleImputer from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

Modern Analytic Methods: Part I

Ron Kenett, Shelemyahu Zacks, Peter Gedeck Pages 361-393

Chapter 7 Modern Analytic Methods: Part I

7.5 Decision Trees

Partition models, also called decision trees, are non-parametric tools used in supervised learning in the context of classification and regression. In supervised learning you observe multiple covariate and one or more target variables. The goal is to predict or classify the target using the values of covariates. Decision trees are based on splits in covariates or predictors that create separate but homogeneous groups. Splits are not sensitive to outliers but are based on a "greedy" one -step look ahead, without accounting for overall performance. Breiman et al. (1984) implement a decision tree procedure called CART (Classification And Regression Trees). Other procedures are C4.5 and CHAID (Chi-square Automatic Interaction

Chapter 7 Modern Analytic Methods: Part I

Example 7.2 Data set **SENSORS.csv** consists of 174 measurements from 63 sensors tracking performance of a system under test. Each test generates values for these 63 sensors and a status determined by the automatic test equipment. The distribution of the test results is presented in Fig. 7.5. Our goal is to predict the outcome recorded by the testing equipment, using sensor data. The test results are coded as Pass (corresponding to "Good," 47% of the observations) and Fail (all other categories, marked in grey). The column **Status** is therefore a dichotomized version of the column **Test result**.

```
sensors = mistat.load_data('SENSORS.csv')
dist = sensors['testResult'].value_counts()
dist = dist.sort_index()
ax = dist.plot.bar(color='lightgrey')
ax.patches[dist.index.get_loc('Good')].set_facecolor('black')
plt.show()
```


Chapter 7 Modern Analytic Methods: Part I

The goal is to predict the outcome recorded by the testing equipment, using sensor data. We can use scikit-learn for this. It has decision tree implementations for classification and regression. Here, we create a classification model for Pass-Fail using the 67 sensors.

```
from sklearn.tree import DecisionTreeClassifier, plot_tree, export_text
predictors = [c for c in sensors.columns if c.startswith('sensor')]
outcome = 'status'
X = sensors[predictors]
y = sensors[outcome]
# Train the model
clf = DecisionTreeClassifier(ccp_alpha=0.012, random_state=0)
clf.fit(X, y)
# Visualization of tree
plot_tree(clf, feature_names=list(X.columns))
plt.show()
```


Fig. 7.7 Decision tree visualization of classification tree

	Α	В	С	D	E	F
1	Country 💌	Salesperson 💌	Order Date 💌	OrderID 💌	Units 💌	Order Amouni 💌
2	USA	Fuller	1/01/2011	10392	13	1,440.00
3	UK	Gloucester	2/01/2011	10397	17	716.72
4	UK	Bromley	2/01/2011	10771	18	344.00
5	USA	Finchley	3/01/2011	10393	16	2,556.95
6	USA	Finchley	3/01/2011	10394	10	442.00
7	UK	Gillingham	3/01/2011	10395	9	2,122.92
8	USA	Finchley	6/01/2011	10396	7	1,903.80
9	USA	Callahan	8/01/2011	10399	17	1,765.60
10	USA	Fuller	8/01/2011	10404	7	1,591.25
11	USA	Fuller	9/01/2011	10398	11	2,505.60
12	USA	Coghill	9/01/2011	10403	18	855.01
13	USA	Finchley	10/01/2011	10401	7	3,868.60
14	USA	Callahan	10/01/2011	10402	11	2,713.50
15	UK	Rayleigh	13/01/2011	10406	15	1,830.78
16	USA	Callahan	14/01/2011	10408	10	1,622.40
17	USA	Farnham	14/01/2011	10409	19	319.20
18	USA	Farnham	15/01/2011	10410	16	802.00

X

Y

Supervised Learning

Data Stratification

Decision Trees

	Income	Lot_Size	Ownership
1	60	18.4	owner
2	85.5	16.8	owner
3	64.8	21.6	owner
4	61.5	20.8	owner
5	87	23.6	owner
6	110.1	19.2	owner
7	108	17.6	owner
8	82.8	22.4	owner
9	69	20	owner
10	93	20.8	owner
11	51	22	owner
12	81	20	owner
13	75	19.6	non-owner
14	52.8	20.8	non-owner
15	64.8	17.2	non-owner
16	43.2	20.4	non-owner
17	84	17.6	non-owner
18	49.2	17.6	non-owner
19	59.4	16	non-owner
20	66	18.4	non-owner
21	47.4	16.4	non-owner
22	33	18.8	non-owner
23	51	14	non-owner
24	63	14.8	non-owner

Splitting on Continuous Variables

- Order records according to one variable, say lot size
- Split at the first value
- Measure the dissimilarity between the two subsets
- Split at the next value, and continue
- Repeat for the other variable(s)
- For all variables, the split value that drives the greatest dissimilarity in propensities (or probabilities) is selected as the split point

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> <u>us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524</u>

Splitting on Categorical Variables

- Examine all possible ways in which the categories can be split.
- E.g., nominal categories A, B, C can be split 3 ways {A} and {B, C}
 {B} and {A, C}

{C} and {A, B}

• With many categories, # of potential splits becomes huge

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524 13

Splitting on Categorical Variables

- For ordinal data (ordered categories) there is an option for the splits to respect ordering
- Example: An ordinal predictor takes on the values 1, 2, 3, or 4
- The data can be split 3 ways:
 - $\{1\}$ and $\{2, 3, 4\}$
 - $\{1, 2\}$ and $\{3, 4\}$
 - $\{1, 2, 3\}$ and $\{4\}$

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524 14

Gini Index

Gini Index for rectangle A containing m records

$$I(A) = 1 - \sum_{k=1}^{m} p_k^2$$

p = proportion of cases in rectangle *A* that belong to class *k*

- I(A) = 0 when all cases belong to same class
- Max value when all classes are equally represented (= 0.50 in binary case)

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524</u>

Entropy

p = proportion of cases (out of *m*) in rectangle *A* that belong to class *k*

$$entropy(A) = -\sum_{k=1}^{m} p_k \log_2(p_k)$$

Entropy ranges between 0 (most pure) and log₂(m) (equal representation of classes)

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524</u>

Impurity and Recursive Partitioning

- Obtain overall impurity measure (weighted avg. of individual rectangles)
- At each successive stage, compare this measure across all possible splits in all variables
- Choose the split that reduces impurity the most
- Chosen split points become nodes on the tree

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> <u>us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524</u>

Gini and Entropy measures are not available in JMP. JMP uses measures of dissimilarity (G² and Sum of Squares) rather than measures of impurity

Leaf Report

Response Prob

Leaf Label	non-owner .2 .4 .6 .8	owner
Income>=85.5	0.0833	0.9167
Income<85.5&Lot_Size>=20&Income>=61.5	0.0815	0.9185
Income<85.5&Lot_Size>=20&Income<61.5&Lot_Size>=22	0.2512	0.7488
Income<85.5&Lot_Size>=20&Income<61.5&Lot_Size<22	0.8342	0.1658
Income<85.5&Lot_Size<20&Lot_Size>=17.6&Income<66&Income>=60	0.2901	0.7099
Income<85.5&Lot_Size<20&Lot_Size>=17.6&Income<66&Income<60	0.8601	0.1399
Income<85.5&Lot_Size<20&Lot_Size>=17.6&Income>=66	0.8933	0.1067
Income<85.5&Lot_Size<20&Lot_Size<17.6	0.9248	0.0752

Tree Structure

- Split points become nodes on the tree
- Leaves are the terminal nodes (there are no further splits)
- Read down tree to derive the decision rule

E.g., Income < 85.5, Lot Size is >= 20, and Income >=61.5, the probability that a household is an owner is 0.9185.

- Records within each node are from the training data (validation data are not used in building the tree)
- Default cutoff = 0.5 is used for classification

In the previous example, the record would be classified as an owner.

The Riding Mowers

The leaf report provides a summary the splits

It displays the rules for classifying outcomes

For example, If Income < 85.5, Lot Size is < 17.6, the probability that a household is an owner is 0.0752. This record will be classified as a non-owner.

Leaf Report		
Response Prob		
Leaf Label	non-owner .2 .4 .6 .8	owner
Income>=85.5	0.0833	0.9167
Income<85.5&Lot_Size>=20&Income>=61.5	0.0815	0.9185
Income<85.5&Lot_Size>=20&Income<61.5&Lot_Size>=22	0.2512	0.7488
Income<85.5&Lot_Size>=20&Income<61.5&Lot_Size<22	0.8342	0.1658
Income<85.5&Lot_Size<20&Lot_Size>=17.6&Income<66&Income>=60	0.2901	0.7099
Income<85.5&Lot_Size<20&Lot_Size>=17.6&Income<66&Income<60	0.8601	0.1399
Income<85.5&Lot_Size<20&Lot_Size>=17.6&Income>=66	0.8933	0.1067
Income<85.5&Lot_Size<20&Lot_Size<17.6	0.9248	0.0752

$$Prob_{i} = \frac{n_{i} + prior_{i}}{\sum (n_{i} + prior_{i})}$$

where the summation is across all response levels; n_i is the number of observations at the node for the ith response level; and prior_i is the prior probability for the ith response level, calculated as follows:

 $prior_i = \lambda p_i + (1 - \lambda) P_i$

where p_i is the prior_i from the parent node, P_i is the Prob_i from the parent node, and λ is a weighting factor currently set at 0.9.

Leaf Report		
Response Prob		
Leaf Label	non-owner .2 .4 .6 .8	owner
Income>=85.5	0.0833	0.9167
Income<85.5&Lot_Size>=20&Income>=61.5	0.0815	0.9185
Income<85.5&Lot_Size>=20&Income<61.5&Lot_Size>=22	0.2512	0.7488
Income<85.5&Lot_Size>=20&Income<61.5&Lot_Size<22	0.8342	0.1658
Income<85.5&Lot_Size<20&Lot_Size>=17.6&Income<66&Income>=60	0.2901	0.7099
Income<85.5&Lot_Size<20&Lot_Size>=17.6&Income<66&Income<60	0.8601	0.1399
Income<85.5&Lot_Size<20&Lot_Size>=17.6&Income>=66	0.8933	0.1067
Income<85.5&Lot_Size<20&Lot_Size<17.6	0.9248	0.0752

Stopping Tree Growth

Natural end of process is 100% purity in each leaf

This **overfits** the data, which end up fitting noise in the data

Overfitting leads to low predictive accuracy of new data

Past a certain point, the error rate for the validation data starts to increase

Fit Details					
Measure	Training	Definition			
Entropy RSquare	0.7060	1-Logli	1-Loglike(model)/Loglike(0)		
Generalized RSquare	0.8323	(1-(L(0	(1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))		
Mean -Log p	0.2038	Σ -Log(p[j])/n			
RASE	0.2333	√ Σ(y[i]-p[i])²/n			
Mean Abs Dev	0.1620	Σ [y[i]-p[i]]/n			
Misclassification Rate 0.0		∑(ρ[j]≠	pMax)/n		
N	24	n			
Confusion Matr	ix				
Training					
Actual Pr	edicted Count				
Ownership nor	n-owner	owner			
non-owner	12	0			
owner	2	10			

CART - Classification and regression trees

- CART lets tree grow to full extent, then prunes it back
- Idea is to find that point at which the validation error begins to rise
- Generate successively smaller trees by pruning leaves
- At each pruning stage, multiple trees are possible
- Use *cost complexity* to choose the best tree at that stage

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA https://www.wiley.com/enus/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524

Cost Complexity

 $CC(T) = Err(T) + \alpha L(T)$

CC(T) = cost complexity of a tree Err(T) = proportion of misclassified records L(T) - size of tree $\alpha = \text{penalty factor attached to tree size (set by user)}$

Among trees of given size, choose the one with lowest CC Do this for each size of tree

CART - Classification and regression trees

- Nonparametric (no probabilistic assumptions)
- Automatically performs variable selection
- Uses any combination of continuous/discrete variables
 - Very nice feature: ability to automatically bin massively categorical variables into a few categories (zip code, business class, make/model...)
- Invariant to monotonic transformations of predictive variable
- Unlike regression, not sensitive to outliers in predictive variables

CART Overview

- Classification and Regression Trees are an easily understandable and transparent method for predicting or classifying new records
- A tree is a graphical representation of a set of rules
- Trees must be pruned to avoid over-fitting of the training data
- As trees do not make any assumptions about the data structure, they usually require large samples

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> <u>us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524</u> 29

CHAID - Chi-squared automatic interaction detector

- CHAID, older than CART, uses chi-square statistical test to limit tree growth
- Splitting stops when purity improvement is not statistically significant

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA https://www.wiley.com/enus/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524

CHAID - Chi-squared automatic interaction detector

- CHAID is a non-binary decision tree.
- The decision or split made at each node is still based on a single variable, but can result in multiple branches.
- The split search algorithm is designed for categorical variables.

Classification Trees: CART versus CHAID

- At each split, the CHAID algorithm looks for the predictor variable that if split, most "explains" the category response variable. In order to decide whether to create a particular split based on this variable, the CHAID algorithm tests a hypothesis regarding dependence between the split variable and the categorical response (using the chi-squared test for independence). Using a prespecified significance level, if the test shows that the split variable and the response are independent, the algorithm stops the tree growth. Otherwise, the split is created, and the next best split is searched. In contrast, the CART algorithm decides on a split based on the amount of homogeneity within class that is achieved by the split. The split is reconsidered based on considerations of over-fitting.
- CHAID is most useful for analysis, whereas CART is more suitable for prediction. In other words, CHAID should be used when the goal is to describe or understand the relationship between a response variable and a set of explanatory variables, whereas CART is better suited for creating a model that has high prediction accuracy of new cases.

Limiting Tree Size

JMP uses a combination of limiting tree growth and pruning the tree after it has grown

- Minimum Split Size: Controls the minimum number of records in terminal nodes
- Validation: The tree is grown, and pruned back to maximize the RSquare on the validation data

When validation is used, the "Go" option automates tree growth and pruning

The tree with the maximum Validation Rsquare has 8 splits

The tree is grown to 18 splits, and is pruned back to 8 splits

Validation error rate and confusion matrix for the final tree (cutoff for classification = 0.50)

Validation

- **Generalized RSquare** A measure that can be applied to general regression models. It is based on the likelihood function L and is scaled to have a maximum value of 1. The value is 1 for a perfect model, and 0 for a model no better than a constant model. The Generalized RSquare measure simplifies to the traditional RSquare for continuous normal responses in the standard least squares setting. Generalized RSquare is also known as the Nagelkerke or Craig and Uhler R^2 , which is a normalized version of Cox and Snell's pseudo R^2 . See Nagelkerke (1991).
- **Entropy RSquare** (Appears only when the response is nominal or ordinal.) A measure of fit that compares the log-likelihoods from the fitted model and the constant probability model. Entropy RSquare ranges from 0 to 1, where values closer to 1 indicate a better fit. See "Entropy RSquare" on page 501 in the "Statistical Details" chapter.
- **RSquare** Gives the RSquare for the model.

Validation

- **RMSE** Gives the root mean square error. When the response is nominal or ordinal, the differences are between 1 and p (the fitted probability for the response level that actually occurred).
- **Mean Abs Dev** The average of the absolute values of the differences between the response and the predicted response. When the response is nominal or ordinal, the differences are between 1 and p (the fitted probability for the response level that actually occurred).
- **Misclassification Rate** The rate for which the response category with the highest fitted probability is not the observed category. Appears only when the response is nominal or ordinal.
- **-LogLikelihood** Gives the negative of the log-likelihood. See *Fitting Linear Models*.
- **SSE** Gives the error sums of squares. Available only when the response is continuous.
- **Sum Freq** Gives the number of observations that are used. If you specified a Freq variable in the Neural launch window, Sum Freq gives the sum of the frequency column.

If there are multiple responses, fit statistics are given for each response, and an overall Generalized RSquare and negative Log-Likelihood is given.
Regression Trees for Prediction

- Used with continuous outcome variable
- Procedure like classification tree
- Many splits attempted, choose the one that maximizes the difference between subgroup means
- Difference measured as the sum of squared deviations
- Prediction is the **average** of the numerical target variable (rather than a probability)

Regression Trees

Regression Trees

Boston Housing Data

A	Rows												
С	ount	506											
N	loon	22 532806											
18	iean	22.332000					All Row	/S	Locillorth [) iff a ram a a			
5	td Dev	9.1971041					Mean	22.532806	118.74735	17.3044			
	Cand	idates				 	Std De	v 9.1971041]			
	Term	Candidate \$	5S	LogWorth	rooms<6.94	43			rooms>=6.	943			
	crim	8266.172	73 3	2.6638216	Count Mean 19	430 9.933721			Count Mean 3	76 7.238158			
	zn	6669.062	51 2	4.9773486	Std Dev 6	.3534806			Std Dev 8	.9884514			
	indus	11083.225	47 4	8.7519537	Term	Candidate	• S S	LogWorth	Term	Candidate SS	LogWorth		
	chas	1312.079	27	4.1110954	crim	4300.967	7311	38.57528016	crim	1296.353462	4.24150833		
	nox	9536 224	05 3	9 5670978	indus	3552.756	6728	29.65539469	indus	650.180018	1.45829879		
	11975	40000.001	00 * 44	0.7470400	chas	533.165	5511	3.56806955	chas	97.802924	0.53155728		
	rooms	19339.000	03 " 11	8.1413483	rooms	2498.676	4207 6569	18.68959899	rooms	3060.957502 *	19.65116632		
	age	5573.647	65 1	9.6751451	age	3618.34	1104	30.39395326	age	106.820174	0.05293436		
	dictanc	o 4004 540	64 I	7 1462261	distance	3526.248	B005	29.35482815	distance	210.835800	0.20608146		
	uistaniu	6 4334.340	J4 I	7.1400001	tax	3487 174	4022 4824	21.29849800	tax	1296.353462	4.08218182		
	radial	6708.643	33 2	4.6205659	pt	3808.647	7013	32.66254455	pt	1514.119195	5.52903675		
	tax	8618 084	28 3	4 5266980	b	2454.65	5577	18.26837433	b	750.759998	1.79989185		
	nt	10438 694	78 4	4 8775094	Istat	7311.852	2300 "	88.35250425	Istat	2011.009205	8.73082304		
	h	5259 319	80 1	8 2910466		1		1.	1				
	lotot	40006 404	04 44	0.7407606		-	log	10(<i>p</i> -va	due)				
	Istat	18896,194	18896,19401 113,7427626				0104						

Advantages of Trees

- Easy to use, understand
- Produce rules that are easy to interpret & implement
- Variable selection & reduction is automatic
- Do not require the assumptions of statistical models
- Can work without extensive handling of missing data (this is an option in the Partition dialog in JMP)

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524 43

Disadvantages of Trees

- May not perform well where there is structure in the data that is not well captured by horizontal or vertical splits
- Since the process deals with one variable at a time, no way to capture interactions between variables

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> <u>us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524</u> 44

Improving Trees

- Single trees may not have good predictive ability.
- Results from multiple trees can be combined to improve performance
- The resulting model is an "ensemble" model
- Two multi-tree approaches in JMP Pro:
 - **Bootstrap Forests** (a variant of Random Forests)
 - Boosted Trees

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524 45

Ensemble Tree Methods

Bootstrap Forests (Random Forrest)

Grow many trees to bootstrapped versions of the training data and average them

Boosted Trees (Boosting)

Repeatedly grow shallow trees to the residuals and build up an additive model consisting of a sum of trees

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA https://www.wiley.com/enus/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524

Ensemble Tree Methods

Bootstrap Forests

- A random sample is drawn with replacement from the data set (bootstrapping)
- 2. Predictors are randomly drawn from the candidate list of predictors
- 3. A small tree is fit (a "weak learner")
- 4. The process is repeated
- 5. The final model is the average of all of the trees, producing a "Bootstrap aggregated" (or "bagged) model

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> <u>us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524</u> 47

Ensemble Tree Methods

Boosted Trees

- A simple (small) tree is fit to the data with a random sample of the predictors 1.
- The scaled residuals from this tree are calculated 2.
- A new simple tree is fit to these scaled residuals with another random 3. sample of predictors
- This process continues 4.
- 5. The final boosted model is the sum of the models for the individual trees

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA https://www.wiley.com/enus/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524

🕅 Birkhäuser

Chapter 7 Modern Analytic Methods: Part I

7.8 Neural Networks

A neural network is composed of a set of computational units, called neurons, connected together through weighted connections. Neurons are organized in layers so that every neuron in a layer is exclusively connected to the neurons of the preceding layer and the subsequent layer. Every neuron, also called a node, represents an autonomous computational unit and receives inputs as a series of signals that dictate its activation. Following activation, every neuron produces an output signal. All the input signals reach the neuron simultaneously, so the neuron receives more than one input signal, but it produces only one output signal. Every input signal is associated with a connection weight. The weight determines the relative importance the input signal can have in producing the final impulse transmitted by

Neural networks: Basic Idea

- Combine input information in a complex and flexible neural net "model"
- Model "coefficients" are continually tweaked in an iterative process
- The network's interim performance in classification and prediction informs successive tweaks

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA https://www.wiley.com/enus/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524

Neural Networks

Caja Santiago Ramón y

Cajal el descubridor de la neurona

La primera vez que Cajal ve unas preparaciones de tejido al microscopio de la mano de Aureliano Maestre de San Juan, catedrático de Anatomía en Madrid, se queda tan impresionado que decide aprender histología. Se saca el título de Doctor y estudia todos los tejidos, incluso el sistema nervioso, que en aquella época era un misterio porque no había tintes buenos para poder impregnarlo y solo se apreciaban marañas de células difíciles de interpretar. Por ello, los científicos pensaban que el cerebro estaba formado por multitud de células con prolongaciones que se fusionaban entre sí para formar una extensa red a través de la que se propagaría el impulso nervioso. Era la llamada teoría reticular.

Más tarde, otro hecho que le causa gran asombro es poder ver la forma de las neuronas, teñidas de negro gracias al método de Golgi que le enseña el neurólogo Luis Simarro. Comienza a practicar dicho método con Bartual, un alumno que asistía a sus clases particulares, y llegó a mejorarlo buscando individualizar las células teñidas utilizando animales muy jóvenes: "Puesto que la selva adulta resulta impenetrable e indefinible, ¿por qué no recurrir al estudio del bosque joven, como, si dijéramos, en estado de vivero?".

Con el Golgi modificado estudió cerebros de pollo, gallina, gato... y vio que las células nerviosas (neuronas) poseían formas distintas y eran independientes, poniéndose en contacto unas con otras por contigüidad y no por continuidad como se pensaba. El impulso nervioso se transmitía por contacto, sin necesidad de fusionar las prolongaciones celulares. Era el inicio de su teoría neuronal.

A partir de aquí Santiago Ramón y Cajal, la persona que estaba revelando los secretos del bosque neuronal, comenzó una andadura que cambiaría para siempre el paradigma de la neurociencia.

Cajal premio Nobel

El 25 de octubre de 1906 el Real Instituto Carolino de Estocolmo otorgó a Santiago Ramón y Cajal el Premio Nobel de Fisiología o Medicina por "sus meritorios trabajos sobre la estructura del sistema nervioso". El comunicado, unos días antes, produjo en Cajal "un sentimiento de contrariedad y casi de pavor" y, temiendo la previsible cascada de felicitaciones y homenajes en su honor, estuvo tentado de rechazar el premio. Finalmente, dejando a un lado sus temores, cogió un tren en la estación del Norte de Madrid rumbo a Estocolmo, donde llegaría el 6 de diciembre.

El día 10 tuvo lugar la ceremonia de entrega del Nobel, que compartió con Camillo Golgi, neurólogo italiano y profesor de la universidad de Pavía. Artífice de la técnica de tinción empleada por Cajal, Golgi defendía sin embargo la teoría reticular, que proponía una estructura del sistema nervioso distinta a la planteada por Cajal en su teoría neuronal.

Estas diferencias quedaron patentes en las conferencias que ambos dieron tras la entrega del premio, donde Golgi intentó desmontar la teoría de Cajal a pesar de que esta ya contaba con la aceptación mayoritaria de la comunidad científica. Cajal, por su parte, defendió su teoría reconociendo los trabajos previos de otros científicos, incluido Golgi.

Aunque los Nobel ya eran muy prestigiosos en ese momento, el premio que recibió Cajal un año antes, la Medalla de oro de Von Helmholtz otorgada por la Academia Imperial de Ciencias de Berlín, estaba considerado como el galardón más reputado de la época.

"¡Y pensar que yo, para garantizar la paz del espíritu y huir de toda posible popularidad, escogí deliberadamente la más

MNIST

Modified National Institute of Standards and Technology

ς -5 .5 Б <ч Ð

强 mnist - JMP Pro

<u>File Edit Tables Rows Cols DOE Analyze Graph Tools Add-Ins View Window Help</u>

! 🖼 🔁 😼 | 🔏 🛍 | 🕾 🛆 📮 ! 🌐 🛅 🖽 💳 🔽 🎾 🍃

💌 mnist 🛛 🔊 🔊																					
Source		label	pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	pixel10	pixel11	pixel12	pixel13	pixel14	pixel15	pixel16	pixel17	pi
	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
 Columns (785/1) 	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
1	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	- 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
a pixel0	7	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
/ pixel1	8	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
🖌 pixel2	9	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
🚄 pixel3	10	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
🚄 pixel4	11	, J	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
/ pixel5	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
a pixel6	12	. 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
a pixel?	13		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
a pixel9	14	- 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
🖌 pixel10	15	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
🚄 pixel11	16	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
🚄 pixel12	17	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
pixel13	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
pixel14	19	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
a pixel15	20	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4 -:14 7	21	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
 Rows 	22	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
All rows 10,000	23	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Selected 0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Excluded 0	25	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
labeled 0	26	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	27	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	28	<																			>

Measure	es			Value	e	label					
Generali:	zed RS	quare	0.9	80086	2						
Entropy	RSqua	re	0.7	637519	9						
RASE			0.3	64281	8						
Mean Al	os Dev		0.1	91812	7	0	1 2 3	4 5	6 7 8	9	
Misclass	ificatio	on Rate		0.14	6						
-LogLike	elihood	ł	135	9.209	6						
Sum Free	q			250	0						
Confusion Ma											
Actual				Predicted Count							
label	0	1	2	3	4	5	6	7	8	9	
0	222	0	1	6	1	7	4	1	7	0	
1	0	259	2	3	0	1	4	0	3	1	
2	5	5	227	5	4	0	1	5	9	1	
3	2	1	7	213	0	10	0	4	11	4	
4	3	0	6	1	197	1	3	5	0	26	
5	6	2	5	18	2	172	3	4	13	1	
6	5	0	8	0	2	5	230	0	1	0	
7	0	3	6	6	4	2	0	227	1	10	
8	2	6	9	12	1	10	3	3	188	3	
9	2	1	1	4	17	4	0	17	3	200	

Frequencies

0

1

2 3

4

5

6

7

8

9

Total

N Missing 0 10 Levels

Level Count Prob

742 0.09893

822 0.10960

783 0.10440

757 0.10093

725 0.09667

680 0.09067 752 0.10027

780 0.10400

713 0.09507

746 0.09947

7500 1.00000

Network Structure

- Multiple layers
 - Input layer (raw observations)
 - Hidden layers
 - Output layer
- Nodes
- Weights (like coefficients, subject to iterative adjustment)
- Bias values (also like coefficients, but not subject to iterative adjustment)

Schematic Diagram

Tiny Example

• Using fat and salt content to predict consumer acceptance of cheese

	Obs	Fat Score	Salt Score	Acceptance
1	1	0.2	0.9	like
2	2	0.1	0.1	dislike
3	3	0.2	0.4	dislike
4	4	0.2	0.5	like
5	5	0.4	0.5	like
6	6	0.3	0.8	like

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524 60

Tiny Example Neural Network

Tiny Example Neural Network

Tiny Example Neural Network

The Input Layer

For input layer, input = output

E.g., for record #1:

```
Fat input = output = 0.2
```

Salt input = output = 0.9

Output of input layer = input into hidden layer

The Hidden Layer

In this example, hidden layer has 3 nodes

Each node receives as input the output of all input nodes

Output of each hidden node is a function of the weighted sum of inputs

$$output_j = g(\Theta_j + \sum_{i=1}^p w_{ij} x_i)$$

(The hidden layer function is also called an "activation function".)

The Hidden Layer

TanH The hyperbolic tangent function is a sigmoid function. TanH transforms values to be between -1 and 1, and is the centered and scaled version of the logistic function. The hyperbolic tangent function is:

 $\frac{e^{2x}-1}{e^{2x}+1}$

where x is a linear combination of the X variables.

Linear The identity function. The linear combination of the X variables is not transformed.

The Linear activation function is most often used in conjunction with one of the non-linear activation functions. In this case, the Linear activation function is placed in the second layer, and the non-linear activation functions are placed in the first layer. This is useful if you want to first reduce the dimensionality of the X variables, and then have a nonlinear model for the Y variables.

For a continuous Y variable, if only Linear activation functions are used, the model for the Y variable reduces to a linear combination of the X variables. For a nominal or ordinal Y variable, the model reduces to a logistic regression.

The Hidden Layer

Gaussian The Gaussian function. Use this option for radial basis function behavior, or when the response surface is Gaussian (normal) in shape. The Gaussian function is:

 $e^{-\chi^2}$

where x is a linear combination of the X variables.

Use the Boosting panel in the Model Launch control panel to specify the number of component models and the learning rate. Use the Hidden Layer Structure panel in the Model Launch control panel to specify the structure of the base model.

The learning rate must be $0 < r \le 1$. Learning rates close to 1 result in faster convergence on a final model, but also have a higher tendency to overfit data. Use learning rates close to 1 when a small Number of Models is specified.

Options

Method	Penalty Function	Description
Squared	$\sum \beta_i^2$	Use this method if you think that most of your X variables are contributing to the predictive ability of the model.
Absolute	$\sum \beta_i $	Use either of these methods if you have a large number of X variables, and you think that a few of them contribute more than others to the predictive
Weight Decay	$\Sigma \frac{\beta_i^2}{1+\beta_i^2}$	ability of the model.
NoP enalty	none	Does not use a penalty. You can use this option if you have a large amount of data and you want the fitting process to go quickly. However, this option

2

can lead to models with lower predictive performance than models that use a penalty.

The Weights

The weights θ (theta) and w are typically initialized to random values in the range -0.05 to +0.05

>JMP uses random normal starting weights

Equivalent to a model with random prediction (in other words, no predictive value)

These initial weights are used in the first round of training

Output of Node 3, if g is a Logistic Function $output_j = g(\Theta_j + \sum_{i=1}^p w_{ij}x_i)$

$$\operatorname{Output}_{j} = g\left(\theta_{j} + \sum_{i=1}^{p} w_{ij}x_{i}\right) = \frac{1}{1 + e^{-(\theta_{j} + \sum_{i=1}^{p} w_{ij}x_{i})}}$$

$$output_3 = \frac{1}{1 + e^{-[-0.3 + (0.05)(0.2) + (0.01)(0.9)]}} = 0.43$$

70

Tiny Example Neural Weights

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> <u>us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524</u> 71

Output Layer

The output of the last hidden layer becomes input for the output layer Uses same function as above, i.e. a function *g* of the weighted average

Tiny Example Output Layer

Mapping the output to a classification

These values are normalized so they are propensities (which add up to 1.0).

 $P(Y = Dislike) = Output_6/(Output_6 + Output_7)$ = 0.481/(0.481 + 0.506) = 0.49 P(Y = Like) = 1 - P(Y = Dislike)= 0.506/(0.481 + 0.506) = 0.51

The default cutoff for classification is 0.5. This first record would be classified as a Like.

Relation to Linear Regression

A net with a single output node and no hidden layers, where g is the identity function, takes the same form as a linear regression model

$$\hat{y} = \Theta + \sum_{i=1}^{p} w_i x_i$$

Initial Pass-Through Network

Goal: Find weights that yield best predictions

- The process we described above is repeated for all records
- At each record, compare prediction to actual
- Difference is the error for the output node
- Error is propagated back and distributed to all the hidden nodes and used to update their weights

Training the Model

Back Propagation of Error

- Output from output node k: \hat{y}_k
- Error associated with that node:

$$err_k = \hat{y}_k (1 - \hat{y}_k) (y_k - \hat{y}_k)$$

Note: this is like ordinary error, multiplied by a correction factor

Error is Used to Update Weights

$$\theta_j^{new} = \theta_j^{old} + l(err_j)$$

$$w_j^{new} = w_j^{old} + l(err_j)$$

I = constant between 0 and 1, reflects the "learning rate" or "weight decay parameter"

Error is Used to Update Weights

Error is Used to Update Weights

Case Updating

- Weights are updated after each record is run through the network
- Completion of all records through the network is one *epoch* (also called *sweep* or *iteration*)
- After one epoch is completed, return to first record and repeat the process

Case Updating

In case updating, the weights are updated after each record is run through the network (called a *trial*). For example, if we used case updating in the tiny example, the weights would first be updated after running record 1 as follows: Using a learning rate of 0.5, the weights θ_7 , $w_{3,7}$, $w_{4,7}$, and $w_{5,7}$ are updated to

$$\theta_7 = -0.015 + (0.5)(0.123) = 0.047$$

 $w_{3,7} = 0.01 + (0.5)(0.123) = 0.072$
 $w_{4,7} = 0.05 + (0.5)(0.123) = 0.112$
 $w_{5,7} = 0.015 + (0.5)(0.123) = 0.077$

Similarly, we obtain updated weights $\theta_6 = 0.025$, $w_{3,6} = 0.045$, $w_{4,6} = 0.035$, and $w_{5,6} = 0.045$. These new weights are next updated after the second record is run through the network, the third, and so on, until all records are used. This is called one *epoch*, *sweep*, or *iteration* through the data. Typically, there are many iterations.

Batch Updating

- All records in the training set are fed to the network before updating takes place
- In this case, the error used for updating is the sum of all errors from all records

Batch Updating

In batch updating, the entire training set is run through the network before each updating of weights takes place. In that case, the errors err_k in the updating equation is the sum of the errors from all records. In practice, case updating tends to yield more accurate results than batch updating, but requires a longer run time. This is a serious consideration, since even in batch updating, hundreds or even thousands of sweeps through the training data are executed.

When does the updating stop? The most common conditions are one of the following:

- 1. When the new weights are only incrementally different from those of the preceding iteration
- 2. When the misclassification rate reaches a required threshold
- 3. When the limit on the number of runs is reached

Why It Works

- Big errors lead to big changes in weights
- Small errors leave weights relatively unchanged
- Over thousands of updates, a given weight keeps changing until the error associated with that weight is negligible, at which point weights change little

Common Criteria to Stop the Updating

- When weights change very little from one iteration to the next
- When the misclassification rate reaches a required threshold
- When a limit on runs is reached

Neural Model fitting

- One uses an algorithm that finds optimal values of weights and bias values that minimize a function of the combined errors (maximum likelihood)
- This approach produces similar results to back propagation, but
 Its generally much faster

>It can be used for both continuous and categorical responses

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> <u>us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524</u> 87

Neural Model fitting

Neural models tend to overfit the data.

To avoid overfitting, one uses a **penalty parameter** and requires **crossvalidation**

The JMP Neural fitting process:

- 1. Set the penalty to 0
- 2. Use random normal weights for the starting values
- 3. Vary the penalty parameter
- 4. For each value of the penalty parameter, search for weights that minimize error
- 5. Select the model with the lowest crossvalidation error

Tiny Example: Final Weights

Estimates		Diagram
Parameter	Estimate	-4.42
H1_1:Fat Score	15.07742	
H1_1:Salt Score	4.309304	15.08 -1.49
H1_1:Intercept	-4.41607	Fat Score
H1_2:Fat Score	21.30793	21.31
H1_2:Salt Score	3.013078	-0.69
H1_2:Intercept	-9.02918	19.38
H1_3:Fat Score	19.37799	
H1_3:Salt Score	-0.07782	
H1_3:Intercept	-5.42235	4.31
Acceptance(dislike):H1_1	-1.49036	3.01
Acceptance(dislike):H1_2	-0.93768	Salt Score
Acceptance(dislike):H1_3	-1.52125	-0.078 -1.52
Acceptance(dislike):Intercept	-0.69315	

Tiny Example: Fit Statistics

• • Ne	eural									
Validat	ion Column: \	/alidatior	ı							
► Mo	del Launo	ch								
•	lodel NT a	nH(3)								
T T	raining				• \	/alidation				
•	Acceptan	се			 Acceptance 					
N	Neasures		١	/alue		Measures		V	alue	
C	Generalized R	Square	0.337	0917		Generalized RSquare 0.822			6929	
E	Entropy RSqua	are	0.229	6459		Entropy RSquare 0.6			0.6923289	
F	RMSE	opy RSquare (SE (n Abs Dev (977493 RMSE			0.2079112		
Ν	Mean Abs Dev 0.2938			8792		Mean Abs Dev	0.1869488			
N	Misclassification Rate 0.25					Misclassification Rate 0				
-	-LogLikelihood 1.73			7887		-LogLikelihood	b	0.426	5227	
S	Sum Freq			4		Sum Freq			2	
	Confusio	n Matrix				Confusio	on Matrix			
	Actual Predic					Actual	Predic	ted		
	Acceptance	dislike	like			Acceptance	dislike	like		
(dislike	1	0			dislike	1	0		
1	ike	1	2			like	0	1		
	Confusi	on Rates				Confusi	on Rates	i		
		Predic	cted				Predi	cted		
	Actual	Rat	te			Actual	Rat	te		
	Acceptance	dislike	like			Acceptance	dislike	like		
(dislike	1.000	0.000			dislike	1.000	0.000		
1	ike	0.333	0.667			like	0.000	1.000		

Tiny Example: Classifications

Estimated propensities and classifications

- One record in the training set was misclassified
- Both records in the validation set were correctly classified

	Obs	Fat Score	Salt Score	Acceptance	Validation	Probability (Acceptance =dislike)	Probability (Acceptance =like)	H1_1	H1_2	H1_3	Most Likely Acceptance
1	1	0.2	0.9	like	Training	0.447556	0.552444	0.84514	-0.77307	-0.66871	like
2	2	0.1	0.1	dislike	Training	0.949447	0.050553	-0.84508	-0.99728	-0.94094	dislike
3	3	0.2	0.4	dislike	Validation	0.722072	0.277928	0.160176	-0.94482	-0.65781	dislike
4	4	0.2	0.5	like	Training	0.655339	0.344661	0.360128	-0.92614	-0.66001	dislike
5	5	0.4	0.5	like	Training	0.022069	0.977931	0.954915	0.462325	0.816079	like
6	6	0.3	0.8	like	Validation	0.09597	0.90403	0.944404	-0.11269	0.162926	like

Specify Network Architecture

Number of hidden layers

• Most popular – one hidden layer

Number of nodes in hidden layer(s)

• More nodes capture complexity, but increase chances of overfit

Hidden Layer Activation Functions

• Combinations of three functions (TanH, Linear and Gaussian) can be applied in the hidden layers to add model complexity

User Inputs

Network Architecture, cont.

Number of tours

How many times JMP restarts the model-fitting algorithm

"Learning Rate"

- Low values "downweight" the new information from errors at each iteration
- This slows learning, but reduces tendency to overfit to local structure

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA https://www.wiley.com/enus/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524

Advantages

- Good predictive ability
- Can capture complex relationships
- No need to specify a model

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524 94

Disadvantages

- Considered a "black box" prediction machine, with no insight into relationships between predictors and outcome
- No variable-selection mechanism, so you have to exercise care in selecting variables
- Heavy computational requirements if there are many variables

Shmueli, G., Bruce, P., Stephens, M. and Patel, N. (2016) Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro, Wiley, USA <u>https://www.wiley.com/en-</u> <u>us/Data+Mining+for+Business+Analytics%3A+Concepts%2C+Techniques%2C+and+Applications+with+JMP+Pro-p-9781118877524</u> 95

Unsupervised Learning

	Arabic	('ananās) أنتشلن					
	Armenian	what what was (ananas)					
	Danish	ananas					
	Dutch	ananas					
1	English	pineapple					
	Esperanto	ananaso					
	Finnish	ananas					
	French	ananas					
	German	Ananas					
	Georgian	statalo (ananasi)					
	Greek	ανανάς (ananás)					
	Hebrew	אננס (ananás)					
	Hindi	अनानास (anānās)					
	Hungarian	ananász					
	Icelandic	ananas					
	Italian	ananas					
	Latin	ananas					
	Macedonian	ананас (ánanas)					
	Norwegian	ananas					
	Persian	(ânânâs) آناتىلى					
	Polish	ananas					
	Portuguese (eu)	ananás					
	Romanian	Ananas					
	Russian	ананас (ananás)					
	Swedish	ananas					
	Turkish	ananas					

Clustering

- Clustering is a technique for finding similarity groups in data, called **clusters**. I.e.,
 - it groups data instances that are similar to (near) each other in one cluster and data instances that are very different (far away) from each other into different clusters.
- Clustering is often called an unsupervised learning task as no class values denoting an *a priori* grouping of the data instances are given, which is the case in supervised learning.

An illustration

• The data set has three natural groups of data points, i.e., 3 natural clusters.

Aspects of clustering

- A clustering algorithm
 - Partitional clustering
 - Hierarchical clustering
 - ...
- A distance (similarity, or dissimilarity) function
- Clustering quality
 - Inter-clusters distance \Rightarrow maximized
 - Intra-clusters distance \Rightarrow minimized
- The quality of a clustering result depends on the algorithm, the distance function, and the application.

K-means clustering

- K-means is a partitional clustering algorithm
- Let the set of data points (or instances) D be

{ \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_n }, where $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{ir})$ is a vector in a real-valued space $X \subseteq R^r$, and r is the number of attributes (dimensions) in the data.

- The *K*-means algorithm partitions the given data into *k* clusters.
 - Each cluster has a cluster center, called centroid.
 - *K* is specified by the user

K-means algorithm

Given *K*, the *K*-means algorithm works as follows:

- 1) Randomly choose *K* data points (seeds) to be the initial centroids, cluster centers
- 2) Assign each data point to the closest centroid
- 3) Re-compute the centroids using the current cluster memberships.
- 4) If a convergence criterion is not met, go to 2).

Stopping/convergence criterion

- 1. no (or minimum) re-assignments of data points to different clusters,
- 2. no (or minimum) change of centroids, or
- 3. minimum decrease in the **sum of squared error** (SSE),

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$
(1)

C_i is the *j*th cluster, m_j is the centroid of cluster C_j (the mean vector of all the data points in C_j), and dist(x, m_j) is the distance between data point x and centroid m_j.

An example

(A). Random selection of k centers

Iteration 1: (B). Cluster assignment

(C). Re-compute centroids

An example (cont ...)

Iteration 2: (D). Cluster assignment

Iteration 3: (F). Cluster assignment

(E). Re-compute centroids

(G). Re-compute centroids

Strengths of K-means

- Strengths:
 - Simple: easy to understand and to implement
 - Efficient: Time complexity: O(tkn), where n is the number of data points, K is the number of clusters, and t is the number of iterations.
 - Since both k and t are small. k-means is considered a linear algorithm.
- K-means is the most popular clustering algorithm.
- Note that: it terminates at a local optimum if SSE is used. The global optimum is hard to find due to complexity.

Weaknesses of K-means

- The algorithm is only applicable if the mean is defined.
 - For categorical data, *K*-mode the centroid is represented by most frequent values.
- The user needs to specify K.
- The algorithm is sensitive to **outliers**
 - Outliers are data points that are very far away from other data points.
 - Outliers could be errors in the data recording or some special data points with very different values.

Weaknesses of K-means: Outliers

(A): Undesirable clusters

(B): Ideal clusters

Weaknesses of K-means: Outliers

- One method is to remove some data points in the clustering process that are much further away from the centroids than other data points.
 - Monitor possible outliers over a few iterations and then decide to remove them.
- Another method is to perform random sampling. Since in sampling we only choose a small subset of the data points, the chance of selecting an outlier is very small.
 - Assign the rest of the data points to the clusters by distance or similarity comparison, or classification
Weaknesses of K-means (cont ...)

• The algorithm is sensitive to initial seeds.

(A). Random selection of seeds (centroids)

Weaknesses of K-means (cont ...)

• If we use different seeds: good results

(A). Random selection of k seeds (centroids)

(B). Iteration 1

Weaknesses of K-means (cont ...)

• The *k*-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).

(A): Two natural clusters

(B): k-means clusters

K-means summary

- Despite weaknesses, *K*-means is still the most popular algorithm due to its simplicity, efficiency and
 - other clustering algorithms have their own lists of weaknesses.
- No clear evidence that any other clustering algorithm performs better in general
 - although they may be more suitable for some specific types of data or applications.
- Comparing different clustering algorithms is a difficult task. No one knows the correct clusters!

Common ways to represent clusters

- Use the centroid of each cluster to represent the cluster.
 - compute the radius and
 - standard deviation of the cluster to determine its spread in each dimension
 - The centroid representation alone works well if the clusters are of the hyper-spherical shape.
 - If clusters are elongated or are of other shapes, centroids are not sufficient

Hierarchical methods

Agglomerative Methods

- Begin with n-clusters (each record its own cluster)
- Keep joining records into clusters until one cluster is left (the entire data set)
- Most popular

Divisive Methods

- Start with one all-inclusive cluster
- Repeatedly divide into smaller clusters

Distance between two records

Euclidean Distance is most popular:

$$d_{ij} = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

Normalizing

Problem: Raw distance measures are highly influenced by scale of measurements

Solution: normalize (standardize) the data first

- Subtract mean, divide by std. deviation
- Also called **z-scores**

Other distance measures

- Correlation-based similarity
- Statistical distance (Mahalanobis)
- Manhattan distance (absolute differences)
- Maximum coordinate distance
- Gower's similarity (for mixed variable types: continuous & categorical)

Minimum distance (Cluster A to Cluster B)

- Also called single linkage
- Distance between two clusters is the distance between the pair of records A_i and B_i that are closest

Maximum distance (Cluster A to Cluster B)

- Also called complete linkage
- Distance between two clusters is the distance between the pair of records A_i and B_i that are farthest from each other

Average distance

- Also called average linkage
- Distance between two clusters is the average of all possible pair-wise distances

Centroid distance

- Distance between two clusters is the distance between the two cluster centroids
- Centroid is the vector of variable averages for all records in a cluster

Ward's method

- Considers loss of information when observations are clustered together
- Uses error sum of squares (ESS) to measure the difference between observations and the centroid
- The *Fast Ward* method in JMP is more efficient, and is used automatically for large data sets

The Hierarchical Clustering (using Agglomerative Method)

Steps:

- 1. Start with *n* clusters (each record is its own cluster)
- 2. Merge two closest records into one cluster
- 3. At each successive step, the two clusters closest to each other are merged
- Dendrogram, from left to right, illustrates the process

Interpreting clusters

Goal: obtain meaningful and useful clusters

Caveats:

(1) Random chance can often produce apparent clusters(2) Different cluster methods produce different resultsSolutions:

- Obtain summary statistics
- Also review clusters in terms of variables **not** used in clustering
- Label the cluster (e.g. clustering of financial firms in 2008 might yield label like "midsize, sub-prime loser")

Desirable cluster features

Stability

>Are clusters and cluster assignments sensitive to slight changes in inputs?

➢Are cluster assignments in partition B similar to partition A?

Separation

Check ratio of between-cluster variation to within-cluster variation (higher is better)

K-Means clustering algorithm

- 1. Choose # of clusters desired, K
- 2. Start with a partition into K clusters

Often based on random selection of k centroids

- 3. At each step, move each record to cluster with closest centroid
- 4. Recompute centroids, repeat step 3
- 5. Stop when moving records increases within-cluster dispersion

K-means algorithm: choosing K and initial Partitioning

Choose *K* based on the how results will be used

> e.g., "How many market segments do we want?"

Also experiment with slightly different K's

Initial partition into clusters can be random, or based on domain knowledge

> If random partition, repeat the process with different random partitions

Clustering overview

- Cluster analysis is an exploratory tool
- It is useful only when it produces **meaningful** clusters
- **Hierarchical** clustering gives visual representation of different levels of clustering
- Non-hierarchical clustering is computationally cheap and more stable (good with larger data sets); requires user to set k
- Can use both methods
- Be wary of chance results; data may not have definitive "real" clusters