
A Biomed Data Analyst Training Program

Supervised (and some unsupervised) learning

Professor Ron S. Kenett
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Splitting on Continuous Variables

• Order records according to one variable, say lot size

• Split at the first value

• Measure the dissimilarity between the two subsets

• Split at the next value, and continue

• Repeat for the other variable(s)

• For all variables, the split value that drives the greatest dissimilarity in 
propensities (or probabilities) is selected as the split point
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Splitting on Categorical Variables

• Examine all possible ways in which the categories can be split.

• E.g., nominal categories A, B, C can be split 3 ways

{A} and {B, C}

{B} and {A, C}

{C} and {A, B}

• With many categories, # of potential splits becomes huge
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Splitting on Categorical Variables

• For ordinal data (ordered categories) there is an option for the splits 
to respect ordering 

• Example:  An ordinal predictor takes on the values 1, 2, 3, or 4 

• The data can be split 3 ways:

{1} and {2, 3, 4}

{1, 2} and {3, 4}

{1, 2, 3} and {4}
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Gini Index

Gini Index for rectangle A containing m records

p = proportion of cases in rectangle A that belong to class k
• I(A) = 0 when all cases belong to same class

• Max value when all classes are equally represented (= 0.50 in binary case)

I(A) = 1 -  
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Entropy

p = proportion of cases (out of m) in rectangle A that belong to class k 

• Entropy ranges between 0 (most pure) and log2(m) (equal 
representation of classes)
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Impurity and Recursive Partitioning

 Obtain overall impurity measure (weighted avg. of individual 

rectangles)

 At each successive stage, compare this measure across all possible 

splits in all variables

 Choose the split that reduces impurity the most

 Chosen split points become nodes on the tree
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Tree Structure

 Split points become nodes on the tree

 Leaves are the terminal nodes (there are no further splits)

 Read down tree to derive the decision rule

E.g., Income < 85.5, Lot Size is >= 20, and Income >=61.5 , the probability that a household is 
an owner is 0.9185. 

 Records within each node are from the training data (validation 
data are not used in building the tree)

 Default cutoff = 0.5 is used for classification 

In the previous example, the record would be classified as an owner.
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The Riding Mowers
The leaf report provides a summary the splits 

It displays the rules for classifying outcomes

For example, If Income < 85.5, Lot Size is < 17.6, the probability that a 
household is an owner is 0.0752.  This record will be classified as a non-
owner.
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Stopping Tree Growth
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Natural end of process is 100% purity in each leaf

This overfits the data, which end up fitting noise in the data

Overfitting leads to low predictive accuracy of new data

Past a certain point, the error rate for the validation data starts to increase



Full Tree Error Rate
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CART - Classification and regression trees 

• CART lets tree grow to full extent, then prunes it back

• Idea is to find that point at which the validation error begins to rise

• Generate successively smaller trees by pruning leaves

• At each pruning stage, multiple trees are possible

• Use cost complexity to choose the best tree at that stage
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Cost Complexity

CC(T) = cost complexity of a tree

Err(T) = proportion of misclassified records

L(T) – size of tree

a = penalty factor attached to tree size (set by user)

Among trees of given size, choose the one with lowest CC

Do this for each size of tree

27

CC(T) = Err(T) + a L(T)



CART - Classification and regression trees 

• Nonparametric (no probabilistic assumptions)

• Automatically performs variable selection

• Uses any combination of continuous/discrete variables

• Very nice feature:  ability to automatically bin massively 
categorical variables into a few categories (zip code, business class, 
make/model…)

• Invariant to monotonic transformations of predictive variable

• Unlike regression, not sensitive to outliers in predictive variables
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CART Overview

• Classification and Regression Trees are an easily understandable and 
transparent method for predicting or classifying new records

• A tree is a graphical representation of a set of rules

• Trees must be pruned to avoid over-fitting of the training data

• As trees do not make any assumptions about the data structure, they 
usually require large samples 
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CHAID - Chi-squared automatic interaction 
detector 
• CHAID, older than CART, uses chi-square statistical test to limit tree 

growth

• Splitting stops when purity improvement is not statistically significant
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CHAID - Chi-squared automatic interaction 
detector 
• CHAID is a non-binary decision tree.

• The decision or split made at each node is still based on a single 
variable, but can result in multiple branches.

• The split search algorithm is designed for categorical variables.
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Classification Trees: CART versus CHAID
• At each split, the CHAID algorithm looks for the predictor variable that if split, most "explains" 

the category response variable. In order to decide whether to create a particular split based on 

this variable, the CHAID algorithm tests a hypothesis regarding dependence between the split 

variable and the categorical response (using the chi-squared test for independence). Using a pre-

specified significance level, if the test shows that the split variable and the response are 

independent, the algorithm stops the tree growth. Otherwise, the split is created, and the next 

best split is searched. In contrast, the CART algorithm decides on a split based on the amount of 

homogeneity within class that is achieved by the split. The split is reconsidered based on 

considerations of over-fitting. 

• CHAID is most useful for analysis, whereas CART is more suitable for prediction. In other words, 

CHAID should be used when the goal is to describe or understand the relationship between a 

response variable and a set of explanatory variables, whereas CART is better suited for creating a 

model that has high prediction accuracy of new cases.
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Limiting Tree Size

JMP uses a combination of limiting tree growth and pruning the tree 
after it has grown

Minimum Split Size:  Controls the minimum number of records in 
terminal nodes 

Validation:  The tree is grown, and pruned back to maximize the 
RSquare on the validation data

When validation is used, the “Go” option automates tree growth and 
pruning
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The tree with the 

maximum Validation 

Rsquare has 8 splits

The tree is grown to 

18 splits, and is 

pruned back to 8 

splits

Validation error rate 

and confusion matrix 

for the final tree 

(cutoff for 

classification = 0.50)
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Validation
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Validation
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Regression Trees for Prediction

• Used with continuous outcome variable

• Procedure like classification tree

• Many splits attempted, choose the one that maximizes the difference 
between subgroup means

• Difference measured as the sum of squared deviations

• Prediction is the average of the numerical target variable (rather than 
a probability)
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Advantages of Trees

• Easy to use, understand

• Produce rules that are easy to interpret & implement

• Variable selection & reduction is automatic

• Do not require the assumptions of statistical models

• Can work without extensive handling of missing data (this is an option 
in the Partition dialog in JMP)
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Disadvantages of Trees

• May not perform well where there is structure in the data that is not 
well captured by horizontal or vertical splits

• Since the process deals with one variable at a time, no way to capture 
interactions between variables
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Improving Trees

• Single trees may not have good predictive ability.

• Results from multiple trees can be combined to improve performance

• The resulting model is an “ensemble” model

• Two multi-tree approaches in JMP Pro:

• Bootstrap Forests (a variant of Random Forests)

• Boosted Trees 
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Ensemble Tree Methods

• Bootstrap Forests (Random Forrest)

Grow many trees to bootstrapped versions of the training data and 
average them

• Boosted Trees (Boosting)

Repeatedly grow shallow trees to the residuals and build up an additive 
model consisting of a sum of trees
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Ensemble Tree Methods

Bootstrap Forests

1. A random sample is drawn with replacement from the data set 
(bootstrapping)

2. Predictors are randomly drawn from the candidate list of predictors

3. A small tree is fit (a “weak learner”)

4. The process is repeated

5. The final model is the average of all of the trees, producing a “Bootstrap 
aggregated” (or “bagged) model 
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Ensemble Tree Methods

Boosted Trees

1. A simple (small) tree is fit to the data with a random sample of the predictors

2. The scaled residuals from this tree are calculated

3. A new simple tree is fit to these scaled residuals with another random 
sample of predictors

4. This process continues

5. The final boosted model is the sum of the models for the individual trees
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Neural networks: Basic Idea

• Combine input information in a complex and flexible neural net 
“model”

• Model “coefficients” are continually tweaked in an iterative process

• The network’s interim performance in classification and prediction 
informs successive tweaks
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Neural 
Networks
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MNIST
Modified National Institute of 

Standards and Technology
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Network Structure

• Multiple layers

• Input layer (raw observations)

• Hidden layers 

• Output layer 

• Nodes

• Weights (like coefficients, subject to iterative adjustment)

• Bias values (also like coefficients, but not subject to iterative 
adjustment) 
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Schematic Diagram
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Tiny Example

• Using fat and salt content to predict consumer acceptance of cheese
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Tiny Example Neural Network 
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Tiny Example Neural Network 
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Tiny Example Neural Network 

weight
bias

Initially set as ±0.005 63



The Input Layer

For input layer, input = output

E.g., for record #1:

Fat input = output = 0.2

Salt input = output = 0.9

Output of input layer = input into hidden layer
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The Hidden Layer

In this example, hidden layer has 3 nodes

Each node receives as input the output of all input nodes

Output of each hidden node is a function of the weighted sum of inputs
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(The hidden layer function is also called an ”activation function”.)

 



The Hidden Layer
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The Hidden Layer
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Options
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The Weights

The weights q (theta) and w are typically initialized to random values in 
the range -0.05 to +0.05 

➢JMP uses random normal starting weights

Equivalent to a model with random prediction (in other words, no 
predictive value)

These initial weights are used in the first round of training
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Output of Node 3, if g is a Logistic Function
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Tiny Example Neural Weights
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Output Layer

The output of the last hidden layer becomes input for the output layer

Uses same function as above, i.e. a function g of the weighted average
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Tiny Example Output Layer
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Mapping the output to a classification

These values are normalized so they are propensities (which add up to 1.0).

The default cutoff for classification is 0.5.

This first record would be classified as a Like.
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Relation to Linear Regression

A net with a single output node and no hidden layers, where g is the 
identity function, takes the same form as a linear regression model
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Initial Pass-Through Network

Goal: Find weights that yield best predictions

• The process we described above is repeated for all records

• At each record, compare prediction to actual

• Difference is the error for the output node

• Error is propagated back and distributed to all the hidden nodes and 
used to update their weights

Training the Model

76



Back Propagation of Error

• Output from output node k:

• Error associated with that node:

Note: this is like ordinary error, multiplied by a correction factor

𝑦 𝑘  
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Error is Used to Update Weights

l = constant between 0 and 1, reflects the “learning 
rate” or “weight decay parameter”
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Error is Used to Update Weights
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Error is Used to Update Weights
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Case Updating

• Weights are updated after each record is run through the network

• Completion of all records through the network is one epoch (also 
called sweep or iteration)

• After one epoch is completed, return to first record and repeat the 
process

81



Case Updating
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Batch Updating

• All records in the training set are fed to the network before updating 
takes place

• In this case, the error used for updating is the sum of all errors from 
all records
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Batch Updating
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Why It Works

• Big errors lead to big changes in weights

• Small errors leave weights relatively unchanged

• Over thousands of updates, a given weight keeps changing until the 
error associated with that weight is negligible, at which point weights 
change little
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Common Criteria to Stop the Updating

• When weights change very little from one iteration to the next

• When the misclassification rate reaches a required threshold

• When a limit on runs is reached

86



Neural Model fitting

• One uses an algorithm that finds optimal values of weights and bias 
values that minimize a function of the combined errors (maximum 
likelihood)

• This approach produces similar results to back propagation, but

➢Its generally much faster

➢It can be used for both continuous and categorical responses
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Neural Model fitting

Neural models tend to overfit the data.

To avoid overfitting, one uses a penalty parameter and requires 
crossvalidation

The JMP Neural fitting process:

1. Set the penalty to 0
2. Use random normal weights for the starting values
3. Vary the penalty parameter
4. For each value of the penalty parameter, search for 

weights that minimize error
5. Select the model with the lowest crossvalidation error
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Tiny Example: Final Weights
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Tiny Example:  Fit Statistics
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Tiny Example: Classifications

Estimated propensities and classifications

One record in the training set was misclassified

Both records in the validation set were correctly classified
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Specify Network Architecture

Number of hidden layers

• Most popular – one hidden layer

Number of nodes in hidden layer(s)

• More nodes capture complexity, but increase chances of overfit

Hidden Layer Activation Functions

• Combinations of three functions (TanH, Linear and Gaussian) can be applied 
in the hidden layers to add model complexity

User Inputs
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Network Architecture, cont.

Number of tours

• How many times JMP restarts the model-fitting algorithm

“Learning Rate”

• Low values “downweight” the new information from errors at each iteration

• This slows learning, but reduces tendency to overfit to local structure
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Advantages

• Good predictive ability

• Can capture complex relationships 

• No need to specify a model
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Disadvantages

• Considered a “black box” prediction machine, with no insight into 
relationships between predictors and outcome

• No variable-selection mechanism, so you have to exercise care in 
selecting variables

• Heavy computational requirements if there are many variables
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Unsupervised Learning
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Clustering

• Clustering is a technique for finding similarity groups in 
data, called clusters. I.e., 

• it groups data instances that are similar to (near) 
each other in one cluster and data instances that are 
very different (far away) from each other into 
different clusters. 

• Clustering is often called an unsupervised learning task
as no class values denoting an a priori grouping of the 
data instances are given, which is the case in supervised 
learning. 
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An illustration
• The data set has three natural groups of data points, i.e., 

3 natural clusters. 
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Aspects of clustering

• A clustering algorithm
• Partitional clustering
• Hierarchical clustering
• …

• A distance (similarity, or dissimilarity) function

• Clustering quality
• Inter-clusters distance  maximized

• Intra-clusters distance  minimized

• The quality of a clustering result depends on the algorithm, the distance 
function, and the application.
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K-means clustering

• K-means is a partitional clustering algorithm

• Let the set of data points (or instances) D be 

{x1, x2, …, xn}, 

where xi = (xi1, xi2, …, xir) is a vector in a real-valued space X  Rr, and 
r is the number of attributes (dimensions) in the data. 

• The K-means algorithm partitions the given data into k clusters. 

• Each cluster has a cluster center, called centroid.

• K is specified by the user 
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K-means algorithm

Given K, the K-means algorithm works as follows: 

1) Randomly choose K data points (seeds) to be the initial centroids, 
cluster centers

2) Assign each data point to the closest centroid

3) Re-compute the centroids using the current cluster memberships.

4) If a convergence criterion is not met, go to 2).
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Stopping/convergence criterion 

1. no (or minimum) re-assignments of data points to different clusters, 

2. no (or minimum) change of centroids, or 

3. minimum decrease in the sum of squared error (SSE), 

• Ci is the jth cluster, mj is the centroid of cluster Cj (the mean vector 
of all the data points in Cj), and dist(x, mj) is the distance between 
data point x and centroid mj. 

102


=


=

k

j
C j

j

distSSE
1

2),(
x

mx (1)



An example

+
+

103



An example (cont …)
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Strengths of K-means 

• Strengths: 

• Simple: easy to understand and to implement

• Efficient: Time complexity: O(tkn), 

where n is the number of data points, 

K is the number of clusters, and 

t is the number of iterations. 

• Since both k and t are small. k-means is considered a linear algorithm. 

• K-means is the most popular clustering algorithm.

• Note that: it terminates at a local optimum if SSE is used. The global optimum is 
hard to find due to complexity. 
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Weaknesses of K-means

• The algorithm is only applicable if the mean is defined. 

• For categorical data, K-mode - the centroid is represented by most frequent 
values. 

• The user needs to specify K.

• The algorithm is sensitive to outliers

• Outliers are data points that are very far away from other data points. 

• Outliers could be errors in the data recording or some special data points with 
very different values. 
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Weaknesses of K-means: Outliers
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Weaknesses of K-means: Outliers

• One method is to remove some data points in the clustering process that are 
much further away from the centroids than other data points. 

• Monitor possible outliers over a few iterations and then decide to remove 
them. 

• Another method is to perform random sampling. Since in sampling we only 
choose a small subset of the data points, the chance of selecting an outlier is very 
small. 

• Assign the rest of the data points to the clusters by distance or similarity 
comparison, or classification
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Weaknesses of K-means (cont …)
• The algorithm is sensitive to initial seeds.
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Weaknesses of K-means (cont …)
• If we use different seeds: good results
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Weaknesses of K-means (cont …)

• The k-means algorithm is not suitable for discovering 
clusters that are not hyper-ellipsoids (or hyper-spheres). 

+
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K-means summary
• Despite weaknesses, K-means is still the most popular algorithm due to 

its simplicity, efficiency and 

• other clustering algorithms have their own lists of weaknesses.

• No clear evidence that any other clustering algorithm performs better in 
general 

• although they may be more suitable for some specific types of data 
or applications. 

• Comparing different clustering algorithms is a difficult task. No one 
knows the correct clusters!
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Common ways to represent clusters 

• Use the centroid of each cluster to represent the cluster. 

• compute the radius and 

• standard deviation of the cluster to determine its spread in each 
dimension

• The centroid representation alone works well if the clusters are of 
the hyper-spherical shape.

• If clusters are elongated or are of other shapes, centroids are not 
sufficient 
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Hierarchical methods

Agglomerative Methods

• Begin with n-clusters (each record its own cluster)

• Keep joining records into clusters until one cluster is left (the entire data set)

• Most popular

Divisive Methods

• Start with one all-inclusive cluster

• Repeatedly divide into smaller clusters
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Distance between two records

Euclidean Distance is most popular:
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Normalizing

Problem: Raw distance measures are highly influenced by scale of 
measurements

Solution: normalize (standardize) the data first

• Subtract mean, divide by std. deviation

• Also called z-scores
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Other distance measures

• Correlation-based similarity

• Statistical distance (Mahalanobis)

• Manhattan distance (absolute differences)

• Maximum coordinate distance

• Gower’s similarity (for mixed variable types: continuous & categorical)
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Minimum distance (Cluster A to Cluster B)

• Also called single linkage

• Distance between two clusters is the distance between the pair of 
records Ai and Bj that are closest
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Maximum distance (Cluster A to Cluster B)

• Also called complete linkage

• Distance between two clusters is the distance between the pair of 
records Ai and Bj that are farthest from each other
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Average distance

• Also called average linkage

• Distance between two clusters is the average of all possible pair-wise 
distances
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Centroid distance

• Distance between two clusters is the distance between the two 
cluster centroids

• Centroid is the vector of variable averages for all records in a cluster
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Ward’s method

• Considers loss of information when observations are clustered 
together

• Uses error sum of squares (ESS) to measure the difference between 
observations and the centroid

• The Fast Ward method in JMP is more efficient, and is used 
automatically for large data sets
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The Hierarchical Clustering (using agglomerative method)

Steps:

1. Start with n clusters (each record is its own cluster)

2. Merge two closest records into one cluster

3. At each successive step, the two clusters closest to each other are 
merged

Dendrogram, from left to right, illustrates the process
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Interpreting clusters

Goal: obtain meaningful and useful clusters

Caveats:

(1) Random chance can often produce apparent clusters

(2) Different cluster methods produce different results

Solutions:

• Obtain summary statistics

• Also review clusters in terms of variables not used in clustering

• Label the cluster (e.g. clustering of financial firms in 2008 might yield label 
like “midsize, sub-prime loser”)
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Desirable cluster features

Stability

➢Are clusters and cluster assignments sensitive to slight changes in inputs?  

➢Are cluster assignments in partition B similar to partition A?

Separation

➢check ratio of between-cluster variation to within-cluster variation (higher is 
better)
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K-Means clustering algorithm

1. Choose # of clusters desired, K

2. Start with a partition into K clusters 

Often based on random selection of k centroids 

3. At each step, move each record to cluster with closest centroid

4. Recompute centroids, repeat step 3

5. Stop when moving records increases within-cluster dispersion
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K-means algorithm: choosing K and initial partitioning

Choose K based on the how results will be used 

➢ e.g., “How many market segments do we want?”

Also experiment with slightly different K’s

Initial partition into clusters can be random, or based on domain 
knowledge

➢ If random partition, repeat the process with different random partitions
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Clustering overview

• Cluster analysis is an exploratory tool 

• It is useful only when it produces meaningful clusters

• Hierarchical clustering gives visual representation of different 
levels of clustering

• Non-hierarchical clustering is computationally cheap and more 
stable (good with larger data sets); requires user to set k

• Can use both methods

• Be wary of chance results; data may not have definitive “real” 
clusters
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